A corrugated epsilon-nearzero saturable absorber for a high-performance 1.3 m solid-state bulk laser

Nanoscale(2023)

引用 0|浏览12
暂无评分
摘要
Epsilon-near-zero (ENZ) materials with vanishing permittivity exhibit unprecedented optical nonlinearity within subwavelength propagation lengths in the ENZ region, making them promising photoelectric materials that have achieved exciting results in ultrafast pulse laser modulations. In this study, we fabricated a novel saturable absorber (SA) based on a corrugated indium tin oxide (CITO) film with a symmetrical geometry using a low-cost self-assembly process. The strong saturable absorption of the CITO film triggered by the ENZ effect at normal incidence was comparable to that of the planar indium tin oxide (ITO) film at an optimal 60 degrees incidence (TM polarization) at 1340 nm. In addition, the strong nonlinear optical properties of the CITO film were not limited by the incident angle and polarization state of the pump laser over a wide range of 0-20 degrees. Benefiting from the excellent saturable absorption of CITO-based SA at normal incidence, a Q-switching operation with CITO-based SA at 1.34 mu m was achieved in a Nd:YVO4 solid-state laser system, obtaining pulses of a duration of 85.6 ns, which was one order of magnitude narrower than that of the planar ITO-based SA. This study presents a new strategy for developing high-performance ENZ-based SAs and ultrafast lasers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要