Structures of strong shocks in low-density helium and neon gases

R. Hua, M. Bailly-Grandvaux, J. May,M. Sherlock,M. Dozieres,C. McGuffey,Y. Ping, W. Mori,F. N. Beg

PHYSICAL REVIEW E(2023)

引用 0|浏览13
暂无评分
摘要
Strong shocks are essential components in many high-energy-density environments such as inertial confinement fusion implosions. However, the experimental measurements of the spatial structures of such shocks are sparse. In this paper, the soft x-ray emission of a shock front in a helium gas mixture (90% helium, 10% neon) and a pure neon gas was spatially resolved using an imaging spectrometer. We observe that the shock width in the helium mixture gas is about twice as large as in the pure neon gas. Moreover, they exhibit different precursor layers, where electron temperature greatly exceeds ion temperature, extending for more than similar to 350 mu m with the helium gas mixture but less than 30 mu m in the pure neon. At the shock front, calculations show that the electrons are strongly collisional with mean-free path two orders of magnitude shorter than the characteristic length of the shock. However, the helium ions can reach a kinetic regime as a consequence of their mean-free path being comparable to the scale of the shock. A radiation-hydrodynamic simulation demonstrates the impact of thermal conduction on the formation of the precursors with charge state, Z, playing a major role in heat flow and the precursor formation in both the helium mixture and the pure neon gases. Particle-in-cell simulations are also performed to study the ion kinetic effects on the formation of the observed precursors. A group of fast-streaming ions is observed leading the shock only in the helium gas mixture. Both effects explain the longer precursor layer in the helium shock.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要