Ameliorating the stability of native/thermally denatured chicken-derived myofibrillar proteins particles in an aqueous system: The synergistic effect of acidification combined with inulin and inulin/sodium alginate.

International journal of biological macromolecules(2023)

引用 0|浏览2
暂无评分
摘要
The effect of acidification through hydrochloric acid combined with inulin (In), and inulin/sodium alginate (In/SA) on the stability of native/thermally denatured myofibrillar proteins (MPs/TMPs) particles in an aqueous system was investigated. At the same pH, MPs-In and TMPs-In particles were smaller and had higher absolute potentials than MPs-In/SA and TMPs-In/SA particles. Additionally, the size of MPs-In particles reached 1 μm, and the solubility increased from 21.73 ± 0.57 % to 76.26 ± 1.27 % when the pH was reduced from 5.0 to 3.0. The absolute potential of TMPs 3-In particles increased from 15.77 ± 0.72 to 28.20 ± 0.30 mV, and the solubility increased from 18.65 ± 0.72 % to 74.53 ± 0.74 %. Confocal laser microscopy revealed that, compared with pH 5.0 or 4.0, MPs-In/TMPs-In particles dispersed more evenly at pH 3.0 compared with pH 5.0 or 4.0. This further confirmed that electrostatic repulsion between particles maximally contributed to particle stability. Furthermore, the α-helix content in TMPs-In particles at pH 3.0 decreased from 41.51 ± 1.09 % (TMPs control) to 16.61 ± 1.87 %. This decrement of an up to 60 % led to decreased intramolecular hydrogen bonds and improved surface hydrophobicity. Therefore, a single polysaccharide (In) combined with MPs/TMPs particles exhibited higher dispersion and stability at pH 3.0. These findings could provide new insights into chicken-derived protein beverage processing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要