Autotaxin-lysophosphatidic acid receptor 5 axis evokes endothelial dysfunction via reactive oxygen species signaling.

Anna Janovicz, Aliz Majer, Mónika Kosztelnik,Miklós Geiszt, Jerold Chun,Satoshi Ishii, Gábor József Tigyi,Zoltán Benyó,Éva Ruisanchez

Experimental biology and medicine (Maywood, N.J.)(2023)

引用 0|浏览0
暂无评分
摘要
Lysophosphatidylcholine (LPC) is a bioactive lipid that has been shown to attenuate endothelium-dependent vasorelaxation contributing to endothelial dysfunction; however, the underlying mechanisms are not well understood. In this study, we investigated the molecular mechanisms involved in the development of LPC-evoked impairment of endothelium-dependent vasorelaxation. In aortic rings isolated from wild-type (WT) mice, a 20-min exposure to LPC significantly reduced the acetylcholine chloride (ACh)-induced vasorelaxation indicating the impairment of normal endothelial function. Interestingly, pharmacological inhibition of autotaxin (ATX) by GLPG1690 partially reversed the endothelial dysfunction, suggesting that lysophosphatidic acid (LPA) derived from LPC may be involved in the effect. Therefore, the effect of LPC was also tested in aortic rings isolated from different LPA receptor knock-out (KO) mice. LPC evoked a marked reduction in ACh-dependent vasorelaxation in Lpar1, Lpar2, and Lpar4 KO, but its effect was significantly attenuated in Lpar5 KO vessels. Furthermore, addition of superoxide dismutase reduced the LPC-induced endothelial dysfunction in WT but not in the Lpar5 KO mice. In addition, LPC increased H2O2 release from WT vessels, which was significantly reduced in Lpar5 KO vessels. Our findings indicate that the ATX-LPA-LPA5 receptor axis is involved in the development of LPC-induced impairment of endothelium-dependent vasorelaxation via LPA5 receptor-mediated reactive oxygen species production. Taken together, in this study, we identified a new pathway contributing to the development of LPC-induced endothelial dysfunction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要