Revealing the Kinematic Characteristics and Tectonic Implications of a Buried Fault through the Joint Inversion of GPS and Strong-Motion Data: The Case of the 2022 Mw7.0 Taiwan Earthquake

REMOTE SENSING(2023)

引用 0|浏览7
暂无评分
摘要
Understanding the kinematic characteristics of the Longitudinal Valley Fault Zone (LVFZ) can help us to better understand the evolution of orogens. The 2022 Mw7.0 Taitung earthquake that occurred in Taiwan provides us with a good opportunity to understand the motion characteristics of the Central Range Fault (CRF) and the strain partitioning pattern within the Longitudinal Valley Fault (LVF). We obtained the coseismic displacement and slip distribution of the 2022 Taiwan earthquake based on the strong-motion and GPS data available. The causative fault of this earthquake is the west-dipping Central Range Fault, which is buried beneath the western boundary of the LVF. The coseismic displacement field exhibits a quadrant distribution pattern, indicating a left-lateral strike-slip mechanism with a maximum displacement exceeding 1.25 m. The joint inversion results show that the size of the main asperity is 40 km x 20 km, and the maximum slip amount of 2.6 m is located at a depth of 10 km, equivalent to an earthquake of Mw7.04. The LVFZ is composed of LVF and CRF, which accommodates nearly half of the oblique convergence rate between the Philippine Sea Plate and the Eurasian Plate. There is a phenomenon of strain partitioning in the southern segment of the Longitudinal Valley Fault Zone. The Central Mountain Range Fault is primarily responsible for accommodating strike-slip motion, while the Longitudinal Valley Fault is mainly responsible for accommodating thrust motion.
更多
查看译文
关键词
2022 Taiwan earthquake,longitudinal valley fault zone,coseismic slip,strain partitioning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要