Application of a Magnetic Field to Enhance the Environmental Sustainability and Efficiency of Microbial and Plant Biotechnological Processes

Sustainability(2023)

引用 0|浏览1
暂无评分
摘要
Despite the growing prevalence of using living organisms in industry, the control of biotechnological processes remains highly complex and constitutes one of the foremost challenges in these applications. The usage of electromagnetic fields offers a great opportunity to control various biotechnological processes by alternating growth and cell metabolism without influencing the characteristics of the cultivation medium or the products of the biotechnological process. The investigation of electromagnetic field applications across various industries, including food production, medicine, and pollutant mitigation, has yielded substantial insights. We used the scientific databases PubMed and ScienceDirect to select 103 experimental and theoretical articles that included original results suitable for further investigation. This type of search was repeated with every new relevant article iteratively until no new articles could be detected. Notably, even weak, low-frequency magnetic fields can accelerate the growth of certain organisms, further stabilize the bacterial community in activated sludge within wastewater treatment plants, enhance the fermentation capabilities of both yeast and bacteria, enhance metal bioleaching by the activation of bacterial metabolism, or improve the metal tolerance of plants during the phytoremediation process. Moreover, magnetic fields exhibit a promising sustainable possibility for the better control of biotechnological processes, thus making these processes more competitive compared with the currently used long-term unsustainable extraction of metals. Although with these interesting results, these examples represent highly exceptional applications. Despite these examples, the overall application potential of magnetic fields remains largely unexplored and unknown.
更多
查看译文
关键词
electromagnetic field,biotechnology,microorganisms,metal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要