Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM

Ecotoxicology and Environmental Safety(2023)

引用 0|浏览0
暂无评分
摘要
With urbanization and increasing consumption, there is a growing need to prioritize sustainable development across various industries. Particularly, sustainable development is hindered by air pollution, which poses a threat to both living organisms and the environment. The emission of combustion gases containing particulate matter (PM 2.5) during human and social activities is a major cause of air pollution. To mitigate health risks, it is crucial to have accurate and reliable methods for forecasting PM 2.5 levels. In this study, we propose a novel approach that combines support vector machine (SVM) and long short-term memory (LSTM) with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to forecast PM 2.5 concentrations. The methodology involves extracting Intrinsic mode function (IMF) components through CEEMDAN and subsequently applying different regression models (SVM and LSTM) to forecast each component. The Naive Evolution algorithm is employed to determine the optimal parameters for combining CEEMDAN, SVM, and LSTM. Daily PM 2.5 concentrations in Kaohsiung, Taiwan from 2019 to 2021 were collected to train models and evaluate their performance. The performance of the proposed model is evaluated using metrics such as mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and coefficient of determination (R2) for each district. Overall, our proposed model demonstrates superior performance in terms of MAE (1.858), MSE (7.2449), RMSE (2.6682), and (0.9169) values compared to other methods for 1-day ahead PM 2.5 forecasting. Furthermore, our proposed model also achieves the best performance in forecasting PM 2.5 for 3- and 7-day ahead predictions.
更多
查看译文
关键词
ceemdan decomposition method,svm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要