Electrocardiographic changes during sustained normobaric hypoxia in patients after myocardial infarction

Scientific Reports(2023)

引用 0|浏览2
暂无评分
摘要
The safety of prolonged high-altitude stays and exercise for physically fit post-myocardial infarction (MI) patients is unclear. Myocardial tissue hypoxia and pulmonary hypertension can affect cardiac function and electrophysiology, possibly contributing to arrhythmias. We included four non-professional male athletes, clinically stable after left ventricular MI (three with ST-segment elevation MI and one with non-ST-segment elevation MI) treated with drug-eluting stents for single-vessel coronary artery disease. Oxygen levels were reduced to a minimum of 11.8%, then restored to 20.9%. We conducted electrocardiography (ECG), ergometry, and echocardiography assessments in normoxic and hypoxic conditions. With an average age of 57.8 ± 3.3 years and MI history 37 to 104 months prior, participants experienced a significant increase in QTc intervals during hypoxia using Bazett’s (from 402 ± 13 to 417 ± 25 ms), Fridericia’s (from 409 ± 12 to 419 ± 19 ms), and Holzmann's formulas (from 103 ± 4 to 107 ± 6%) compared to normoxia. This effect partially reversed during recovery. Echocardiographic signs of pulmonary hypertension during normobaric hypoxia correlated significantly with altered QTc intervals (p < 0.001). Despite good health and complete revascularization following MI, susceptibility to hypoxia-induced QTc prolongation and ventricular ectopic beats persists, especially during physical activity. MI survivors planning high-altitude activities should consult cardiovascular specialists with high-altitude medicine expertise.
更多
查看译文
关键词
sustained normobaric hypoxia,electrocardiographic changes,myocardial infarction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要