Modelled broad-scale shifts on seafloor ecosystem functioning due to microplastic impacts on bioturbation

Scientific Reports(2023)

引用 0|浏览0
暂无评分
摘要
Bioturbating species play an essential role in regulating nutrient cycling in marine sediments, but their interaction with microplastics (MP) remains poorly understood. Here we investigated the linkage between MP and ecosystem functioning using experimental observations of luminophore distribution in the sediment to parametrize bioturbation coefficients (Db). this information as fed into a simplified transport-reaction model, allowing us to upscale our experimental results. We found that the composition of bioturbators modulated shifts in the ecosystem functioning under microplastic stress. Maldanid worms (Macroclymenella stewartensis), functionally deep burrowing and upward-conveyor belt feeders, became less active. The Db of M. stewartensis reduced by 25% with the addition of 0.002 g MP cm−2 at surface sediment, causing accumulation of organic matter in the oxic sediment zone and stimulating aerobic respiration by 18%. In contract, the tellinid bivalve Macomona liliana, functionally a surface -deposit feeder that excretes at depth, maintained particle mixing behaviour in MP-contaminated systems. This study provides a mechanistic insight into the impacts of MP and indicates that the functional role of bioturbating species should be involved in assessing the global impact of MP. The model allowed us to understand the broad-scale impact of MP on seafloor habitat.
更多
查看译文
关键词
seafloor ecosystem,microplastic impacts,broad-scale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要