DTRL: Decision Tree-based Multi-Objective Reinforcement Learning for Runtime Task Scheduling in Domain-Specific System-on-Chips

ACM Transactions on Embedded Computing Systems(2023)

引用 0|浏览2
暂无评分
摘要
Domain-specific systems-on-chip (DSSoCs) combine general-purpose processors and specialized hardware accelerators to improve performance and energy efficiency for a specific domain. The optimal allocation of tasks to processing elements (PEs) with minimal runtime overheads is crucial to achieving this potential. However, this problem remains challenging as prior approaches suffer from non-optimal scheduling decisions or significant runtime overheads. Moreover, existing techniques focus on a single optimization objective, such as maximizing performance. This work proposes DTRL, a decision-tree-based multi-objective reinforcement learning technique for runtime task scheduling in DSSoCs. DTRL trains a single global differentiable decision tree (DDT) policy that covers the entire objective space quantified by a preference vector. Our extensive experimental evaluations using our novel reinforcement learning environment demonstrate that DTRL captures the trade-off between execution time and power consumption, thereby generating a Pareto set of solutions using a single policy. Furthermore, comparison with state-of-the-art heuristic–, optimization–, and machine learning-based schedulers shows that DTRL achieves up to 9× higher performance and up to 3.08× reduction in energy consumption. The trained DDT policy achieves 120 ns inference latency on Xilinx Zynq ZCU102 FPGA at 1.2 GHz, resulting in negligible runtime overheads. Evaluation on the same hardware shows that DTRL achieves up to 16% higher performance than a state-of-the-art heuristic scheduler.
更多
查看译文
关键词
Domain-specific system-on-chip, task scheduling, reinforcement learning, decision trees, resource management, multi-objective optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要