Quantum paramagnetism in the decorated square-kagome antiferromagnet Na6Cu7BiO4(PO4)4Cl3

PHYSICAL REVIEW B(2023)

引用 0|浏览10
暂无评分
摘要
The square-kagome lattice Heisenberg antiferromagnet is a highly frustrated Hamiltonian whose material realizations have been scarce. We theoretically investigate the recently synthesized Na6Cu7BiO4(PO)4)4Cl3 where a Cu2+ spin-1/2 square-kagome lattice (with a six site unit cell) is decorated by a seventh magnetic site alternatingly above and below the layers. The material does not show any sign of long-range magnetic order down to 50 mK despite a Curie-Weiss temperature of -212 K indicating a quantum paramagnetic phase. Our DFT energy mapping elicits a purely antiferromagnetic Hamiltonian that features longer range exchange interactions beyond the pure square-kagome model and, importantly, we find the seventh site to be strongly coupled to the plane. We combine two variational Monte Carlo approaches, pseudofermion/Majorana functional renormalization group and Schwinger-Boson mean field calculations to show that the complex Hamiltonian of Na6Cu7BiO4(PO)4)4Cl3 still features a nonmagnetic ground state. We explain how the seventh Cu2+ site actually aids the stabilization of the disordered state. We predict static and dynamic spin structure factors to guide future neutron scattering experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要