In-situ grafting of dextran on oil body associated proteins at the oil-water interface through maillard glycosylation: Effect of dextran molecular weight

FOOD HYDROCOLLOIDS(2024)

引用 0|浏览11
暂无评分
摘要
Oil bodies, which are lipid-storage organelles in plant seeds, are stabilized by monolayer of phospholipids and oil body associated proteins (OBAPs). OBAPs have unique interfacial characteristics but poor water-solubility because they contain long hydrophobic segments. In this paper, dextran with different molecular weights (5, 10, and 20 kDa) was grafted onto the C-and N-terminal ends of OBAPs through in situ Maillard reaction on the surface of oil bodies. Grafting of dextran increases the length of the hydrophilic region of OBAPs, which improves their solubility and function as interfacial stabilizers. Changes in chemical bonds after grafting were observed via confocal-Raman microscopy. After de-lipidization, the physicochemical properties of OBAPs-dextran conjugates were analyzed using solubility and infrared spectroscopy. The interfacial behavior was evaluated using critical micelle concentration and interfacial rheology. The results showed that grafting of dextran improved the solu-bility of the OBAPs by 20-fold. The contents of & alpha;-helix and & beta;-sheet in the OBAPs-dextran conjugates decreased, when compared with OBAPs. The critical micelle concentration of OBAPs-dextran conjugates ranged from 1.20 to 4.92 & mu;g/mL. Grafting of dextran, especially high molecular weight, improved the capacity of the OBAPs to increase the interfacial pressure. Our results provide an efficient and eco-friend method for modification of membrane proteins.
更多
查看译文
关键词
Interface,Glycosylation,Dextran,Membrane protein,Surface grafting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要