Visualisation of [11C]CO2 storage in coal with positron emission tomography imaging

Yu Jing, Aaron Uthaia Kumaran,Damion Stimson,Karine Mardon, Ljubco Najdovski, Christoph Barkhausen,Ryan T. Armstrong,Peyman Mostaghimi

FUEL(2024)

引用 0|浏览10
暂无评分
摘要
Positron Emission Tomography (PET) imaging has demonstrated its capability in providing real-time visual-isation of fluids flow in geological materials. However, it has not been used for the study of CO2 injection and storage in coal for the application of CO2 geo-sequestration. To observe the processes directly, [11C]CO2 is the most optimal radiotracer, which is rarely used due to its short half-life (20.4 min) and handling safety issues as a gaseous tracer. In this work, a novel laboratory protocol is developed to use gaseous [11C]CO2 as the radio -labelled tracer to visualise and quantify dynamic processes of gas spreading, adsorption, diffusion, and advection flow in coal under in-situ conditions. The experimental setup integrates core flooding setup with PET scanning. Coal samples are pre-treated to mimic different injection conditions, including coal seam gas reservoirs in early production stage, gas depleted stage and CO2 storage stage. Due to high temporal resolution of PET imaging, time-lapse CO2 gas concentration map of each test is acquired by converting the PET intensity values to gas concentrations. Impacting factors on storage capacity and efficiency are also studied, including permeability, gas adsorption, gas exchange, and initial storage conditions. This work introduces a new laboratory protocol and analysing framework to quantify sub-core scale multiphysics CO2 flow in coal, which provides a foundation for future across-scale theoretical and experimental study of multiphase and multicomponent flow behaviours in coal for the application of CO2 geo-sequestration.
更多
查看译文
关键词
Positron emission tomography,Porous media imaging,CO 2 geo-sequestration,CCUS,Coal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要