Stable Nonlinear Feedback Control Using Quaternionic Orbital Elements

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS(2023)

引用 0|浏览0
暂无评分
摘要
No AccessEngineering NotesStable Nonlinear Feedback Control Using Quaternionic Orbital ElementsPatrick Kelly, Manoranjan Majji and John L. JunkinsPatrick Kelly https://orcid.org/0000-0003-2594-1213Texas A&M University, College Station, Texas 77843*Graduate Research Assistant, Department of Aerospace Engineering, 3141 TAMU.Search for more papers by this author, Manoranjan MajjiTexas A&M University, College Station, Texas 77843†Associate Professor, Department of Aerospace Engineering, 3141 TAMU.Search for more papers by this author and John L. JunkinsTexas A&M University, College Station, Texas 77843‡Distinguished Professor, Department of Aerospace Engineering, 3141 TAMU.Search for more papers by this authorPublished Online:5 Sep 2023https://doi.org/10.2514/1.G007342SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Morante D., Sanjurjo Rivo M. and Soler M., “A Survey on Low-Thrust Trajectory Optimization Approaches,” Aerospace, Vol. 8, No. 3, 2021, p. 88. CrossrefGoogle Scholar[2] Petropoulos A., “Low-Thrust Orbit Transfers Using Candidate Lyapunov Functions with a Mechanism for Coasting,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2004-5089, 2004. https://doi.org/10.2514/6.2004-5089 LinkGoogle Scholar[3] Petropoulos A. E., “Refinements to the Q-Law for the Low-Thrust Orbit Transfers,” AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 05-162, Jan. 2005. Google Scholar[4] Petropoulos A. E. and Lee S., “Optimisation of Low-Thrust Orbit Transfers Using the Q-Law for the Initial Guess,” AAS/AIAA Astrodynamics Specialist Conference and Exhibit, AAS Paper 05-392, Aug. 2005. Google Scholar[5] Shannon J. L., Ozimek M. T., Atchison J. A. and Hartzell C. M., “Q-Law Aided Direct Trajectory Optimization of Many-Revolution Low-Thrust Transfers,” Journal of Spacecraft and Rockets, Vol. 57, No. 4, 2020, pp. 672–682. LinkGoogle Scholar[6] Gurfil P., “Nonlinear Feedback Control of Low-Thrust Orbital Transfer in a Central Gravitational Field,” Acta Astronautica, Vol. 60, No. 8, 2007, pp. 631–648. https://doi.org/10.1016/j.actaastro.2006.10.001 CrossrefGoogle Scholar[7] Varga G. I. and Pérez J. S., “Many-Revolution Low-Thrust Orbit Transfer Computation Using Equinoctial Q-Law Including J2 and Eclipse Effects,” 6th International Conference on Astrodynamics Tools and Techniques, Vol. 1, Univelt, Inc., San Diego, CA, 2016, pp. 29–42. Google Scholar[8] Hintz G. R., “Survey of Orbit Element Sets,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, 2008, pp. 785–790. https://doi.org/10.2514/1.32237 LinkGoogle Scholar[9] Junkins J. L. and Taheri E., “Exploration of Alternative State Vector Choices for Low-Thrust Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 47–64. https://doi.org/10.2514/1.G003686 LinkGoogle Scholar[10] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, Revised ed., AIAA Education Series, AIAA, Reston, VA, 1999, pp. 471–514. LinkGoogle Scholar[11] Kelly P., Manoranjan M. and Junkins J. L., “Multiplicative Quaternion Error Feedback for Orbital Maneuvers,” 44th Annual AAS Guidance, Navigation and Control Conference, AAS Paper 22-085, Springer Nature, 2022. Google Scholar[12] Musen P., “On the Application of Pfaff’s Method in the Theory of Variation of Astronomical Constants,” NASA TN D-2301, 1964. Google Scholar[13] Gurfil P., “Euler Parameters as Nonsingular Orbital Elements in Near-Equatorial Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 1079–1084. https://doi.org/10.2514/1.14760 LinkGoogle Scholar[14] Broucke R., Lass H. and Ananda M., “Redundant Variables in Celestial Mechanics,” Astronomy and Astrophysics, Vol. 13, Aug. 1971, pp. 390–398. Google Scholar[15] Altman S. P., “A Unified State Model of Orbital Trajectory and Attitude Dynamics,” Celestial Mechanics, Vol. 6, No. 4, 1972, pp. 425–446. https://doi.org/10.1007/BF01227757 CrossrefGoogle Scholar[16] Vitins M., “Keplerian Motion and Gyration,” Celestial Mechanics, Vol. 17, No. 2, 1978, pp. 173–192. https://doi.org/10.1007/BF01371329 CrossrefGoogle Scholar[17] Deprit A., “Ideal Elements for Perturbed Keplerian Motions,” Journal of Research of the National Bureau of Standards, Vol. 79, No. 1, 1975, pp. 1–10. Google Scholar[18] Urrutxua H., Sanjurjo-Rivo M. and Peláez J., “DROMO Propagator Revisited,” Celestial Mechanics and Dynamical Astronomy, Vol. 124, No. 1, 2016, pp. 1–31. https://doi.org/10.1007/s10569-015-9647-y CrossrefGoogle Scholar[19] Vittaldev V., Mooij E. and Naeije M., “Unified State Model Theory and Application in Astrodynamics,” Celestial Mechanics and Dynamical Astronomy, Vol. 112, No. 3, 2012, pp. 253–282. https://doi.org/10.1007/s10569-011-9396-5 CrossrefGoogle Scholar[20] Roa J. and Kasdin N. J., “Alternative Set of Nonsingular Quaternionic Orbital Elements,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 11, 2017, pp. 2737–2751. https://doi.org/10.2514/1.G002753 LinkGoogle Scholar[21] Altman S. P., “Velocity-Space Maps and Transforms of Tracking Observations for Orbital Trajectory State Analysis,” Celestial Mechanics, Vol. 11, No. 4, 1975, pp. 405–428. https://doi.org/10.1007/BF01650281 Google Scholar[22] Junkins J. L. and Turner J. D., Optimal Spacecraft Rotational Maneuvers, Elsevier, New York, 1986, pp. 16–39. Google Scholar[23] Junkins J. L. and Turner J. D., “On the Analogy Between Orbital Dynamics and Rigid Body Dynamics,” Journal of the Astronautical Sciences, Vol. 27, Dec. 1979, pp. 345–358. Google Scholar[24] Pines S., “Variation of Parameters for Elliptic and Near Circular Orbits,” Astronomical Journal, Vol. 66, No. 1, 1961, pp. 5–7. CrossrefGoogle Scholar[25] Wong P., “Nonsingular Variation of Parameter Equations for Computation of Space Trajectories,” ARS Journal, Vol. 32, No. 2, 1962, pp. 264–265. Google Scholar[26] Herrick S., “Universal Variables,” Astronomical Journal, Vol. 70, No. 4, 1965, pp. 309–316. CrossrefGoogle Scholar[27] Born G. H., Christensen E. J. and Seversike L. K., “Special Perturbations Employing Osculating Reference States,” Celestial Mechanics, Vol. 9, No. 1, 1974, pp. 41–53. https://doi.org/10.1007/BF01236163 CrossrefGoogle Scholar[28] Slotine J.-J. E. and Li W., Applied Nonlinear Control, Prentice–Hall, Hoboken, NJ, 1991, pp. 40–76. Google Scholar[29] Vadali S. R., “On the Euler Parameter Constraint,” 26th Aerospace Sciences Meeting, AIAA Paper 1988-0670, 1988. https://doi.org/10.2514/6.1988-670 LinkGoogle Scholar[30] Narayanaswamy S. and Damaren C. J., “Equinoctial Lyapunov Control Law for Low-Thrust Rendezvous,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 4, 2023, pp. 781–795. LinkGoogle Scholar Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsControl TheoryFeedback ControlGuidance, Navigation, and Control SystemsOptimal Control TheoryOrbital ManeuversPropulsion and PowerSpace OrbitSpacecraft GuidanceSpacecraft Guidance and ControlSpacecraft Propulsion KeywordsFull State FeedbackOrbital ElementsTrajectory OptimizationOrbital ManeuversSpacecraft TrajectoriesSpacecraft PropulsionArgument of LatitudeDynamic Stability ControlKepler's Laws of Planetary MotionOrbital DynamicsPDF Received1 November 2022Accepted14 July 2023Published online5 September 2023
更多
查看译文
关键词
Full State Feedback,Orbital Elements,Trajectory Optimization,Orbital Maneuvers,Spacecraft Trajectories,Spacecraft Propulsion,Argument of Latitude,Dynamic Stability Control,Kepler's Laws of Planetary Motion,Orbital Dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要