A switchable ionic diode membrane enabled by sub-3 nm covalent organic framework channels

GIANT(2023)

引用 1|浏览4
暂无评分
摘要
Various efforts have been made to mimic the regulatory properties of biological channels that exist in cell membranes of living organisms. Such ion channels are able to tune electric signals in response to changes in surrounding environments (e.g., pH or ions). Here, we report the design and fabrication of a novel pH-switchable ionic diode membrane (IDM), TFP-EB COF@PET, composed of a thin layer of sub-3 nm covalent organic framework (COF) channels and a polyethylene terephthalate (PET) membrane having conical nanochannels with tip size of 20–40 nm. The designed IDM is found to exhibit ion current rectification (ICR) over a wide range of electrolyte concentrations, attributable to its structural and charge asymmetries. Interestingly, the TFP-EB COF@PET can exhibit pH-switchable ion transport behaviors even though the surface charge natures of TFP-EB COF and PET channels remain unchanged. The mechanisms for the pH-switchable ICR properties are proposed to explain the inversion phenomenon. This work highlights the pH-switchable ionic transport properties of the sub-3 nm-scale COF-based IDM, as well as its potential for long-term operation under high salinity conditions.
更多
查看译文
关键词
Nanofluidics,COF membrane,Ion transport,Ion current rectification,Asymmetric nanochannel membrane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要