A Theory of Cartesian Arrays (with Applications in Quantum Circuit Verification)

AUTOMATED DEDUCTION, CADE 29(2023)

引用 0|浏览1
暂无评分
摘要
We present a theory of Cartesian arrays, which are multi-dimensional arrays with support for the projection of arrays to subarrays, as well as for updating sub-arrays. The resulting logic is an extension of Combinatorial Array Logic (CAL) and is motivated by the analysis of quantum circuits: using projection, we can succinctly encode the semantics of quantum gates as quantifier-free formulas and verify the end-to-end correctness of quantum circuits. Since the logic is expressive enough to represent quantum circuits succinctly, it necessarily has a high complexity; as we show, it suffices to encode the k-color problem of a graph under a succinct circuit representation, an NEXPTIME-complete problem. We present an NEXPTIME decision procedure for the logic and report on preliminary experiments with the analysis of quantum circuits using this decision procedure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要