Towards Developing Mid-Infrared Photonics Using Mxenes

arxiv(2023)

引用 0|浏览9
暂无评分
摘要
Recent research and development in the mid-infrared (IR) wavelength range (2-20 um) for a variety of applications, such as trace gas monitoring, thermal imaging, and free space communications have shown tremendous and fascinating progress. MXenes, which mainly refer to two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have drawn a lot of interest since their first investigation in 2011. MXenes project enormous potential for use in optoelectronics, photonics, catalysis, and energy harvesting fields proven by extensive experimental and theoretical studies over a decade. MXenes offers a novel 2D nano platform for cutting-edge optoelectronics devices due to their interesting mechanical, optical, and electrical capabilities, along with their elemental and chemical composition. We here discuss the key developments of MXene emphasizing the evolution of material synthesis methods over time and the resulting device applications. Photonic and optoelectronic device design and fabrication for mid-IR photonics are demonstrated by integrating MXene materials with various electrical and photonic platforms. Here, we show the potential of using Mxene in photonics for mid-IR applications and a pathway toward achieving next-generation devices for various applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要