Performance of periodic EOM-CCSD for bandgaps of inorganic semiconductors and insulators

JOURNAL OF CHEMICAL PHYSICS(2024)

引用 0|浏览4
暂无评分
摘要
We calculate bandgaps of 12 inorganic semiconductors and insulators composed of atoms from the first three rows of the Periodic Table using periodic equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Our calculations are performed with atom-centered triple-zeta basis sets and up to 64 k-points in the Brillouin zone. We analyze the convergence behavior with respect to the number of orbitals and number of k-points sampled using composite corrections and extrapolations to produce our final values. When accounting for electron-phonon corrections to experimental bandgaps, we find that EOM-CCSD has a mean signed error of -0.12 eV and a mean absolute error of 0.42 eV; the largest outliers are C (error of -0.93 eV), BP (-1.00 eV), and LiH (+0.78 eV). Surprisingly, we find that the more affordable partitioned EOM-MP2 theory performs as well as EOM-CCSD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要