Effects of iron homeostasis on epigenetic age acceleration: a two-sample Mendelian randomization study

Clinical Epigenetics(2023)

引用 0|浏览3
暂无评分
摘要
Background Epigenetic clocks constructed from DNA methylation patterns have emerged as excellent predictors of aging and aging-related health outcomes. Iron, a crucial element, is meticulously regulated within organisms, a phenomenon referred as iron homeostasis. Previous researches have demonstrated the sophisticated connection between aging and iron homeostasis. However, their causal relationship remains relatively unexplored. Results Through two-sample Mendelian randomization (MR) utilizing the random effect inverse variance weighted (IVW) method, each standard deviation (SD) increase in serum iron was associated with increased GrimAge acceleration (GrimAA, Beta IVW = 0.27, P = 8.54E−03 in 2014 datasets; Beta IVW = 0.31, P = 1.25E−02 in 2021 datasets), HannumAge acceleration (HannumAA, Beta IVW = 0.32, P = 4.50E−03 in 2014 datasets; Beta IVW = 0.32, P = 8.03E−03 in 2021 datasets) and Intrinsic epigenetic age acceleration (IEAA, Beta IVW = 0.34, P = 5.33E−04 in 2014 datasets; Beta IVW = 0.49, P = 9.94E−04 in 2021 datasets). Similar results were also observed in transferrin saturation. While transferrin manifested a negative association with epigenetic age accelerations (EAAs) sensitivity analyses. Besides, lack of solid evidence to support a causal relationship from EAAs to iron-related biomarkers. Conclusions The results of present investigation unveiled the causality of iron overload on acceleration of epigenetic clocks. Researches are warranted to illuminate the underlying mechanisms and formulate strategies for potential interventions.
更多
查看译文
关键词
Iron metabolism,Iron homeostasis,Senescence,Aging,Epigenetic age acceleration,Mendelian randomization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要