Design and synthesis of fosmidomycin analogs containing aza-linkers and their biological activity evaluation

Xin Wu, Mengwei Bu, Zili Yang, Hongrui Ping, Chunlin Song,Jiang Duan,Aidong Zhang

PEST MANAGEMENT SCIENCE(2024)

引用 1|浏览2
暂无评分
摘要
BACKGROUND: The enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway are attractive targets of a new mode of action for developing anti-infective drugs and herbicides, and inhibitors against 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), the second key enzyme in the pathway, have been intensively investigated; however, few works are reported regarding IspC inhibitors designed for new herbicide discovery.RESULTS: A series of fosmidomycin (FOS) analogs were designed with nitrogen-containing linkers replacing the trimethylene linker between the two active substructures of FOS, phosphonic acid and hydroxamic acid. Synthesis followed a facile three-step route of sequential aza-Michael addition of alpha-amino acids to dibenzyl vinylphosphonate, amidation of the amino acid carboxyl with O-benzyl hydroxylamine, and simultaneous removal of the benzyl protective groups. Biological activity evaluation of IspC and model plants revealed that some compounds had moderate enzyme and model plant growth inhibition effects. In particular, compound 10g, which has a N-(4-fluorophenylethyl) nitrogen-containing linker, exhibited the best plant inhibition activities, superior to the control FOS against the model plants Arabidopsis thaliana, Brassica napus L., Amaranthus retroflexus and Echinochloa crus-galli. A dimethylallyl pyrophosphate rescue assay on A. thaliana confirmed that both 10g and FOS exert their herbicidal activity by blocking the MEP pathway. This result consistent with molecular docking, which confirmed 10g and FOS binding to the IspC active site in a similar way.CONCLUSION: Compound 10g has excellent herbicidal activity and represents the first herbicide lead structure of a new mode of action that targets IspC enzyme in the MEP pathway.(c) 2023 Society of Chemical Industry.
更多
查看译文
关键词
nitrogen-containing linker,aza-Michael addition,IspC,fosmidomycin,herbicidal activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要