Mixed nitrate and metal contamination influences operational speciation of toxic and essential elements.

Michael P Thorgersen,Jennifer L Goff, Farris L Poole, Kathleen F Walker,Andrew D Putt,Lauren M Lui, Terry C Hazen,Adam P Arkin,Michael W W Adams

Environmental pollution (Barking, Essex : 1987)(2023)

引用 0|浏览2
暂无评分
摘要
Environmental contamination constrains microbial communities impacting diversity and total metabolic activity. The former S-3 Ponds contamination site at Oak Ridge Reservation (ORR), TN, has elevated concentrations of nitric acid and multiple metals from decades of processing nuclear material. To determine the nature of the metal contamination in the sediment, a three-step sequential chemical extraction (BCR) was performed on sediment segments from a core located upgradient (EB271, non-contaminated) and one downgradient (EB106, contaminated) of the S-3 Ponds. The resulting exchangeable, reducing, and oxidizing fractions were analyzed for 18 different elements. Comparison of the two cores revealed changes in operational speciation for several elements caused by the contamination. Those present from the S-3 Ponds, including Al, U, Co, Cu, Ni, and Cd, were not only elevated in concentration in the EB106 core but were also operationally more available with increased mobility in the acidic environment. Other elements, including Mg, Ca, P, V, As, and Mo, were less operationally available in EB106 having decreased concentrations in the exchangeable fraction. The bioavailability of essential macro nutrients Mg, Ca, and P from the two types of sediment was determined using three metal-tolerant bacteria previously isolated from ORR. Mg and Ca were available from both sediments for all three strains; however, P was not bioavailable from either sediment for any strain. The decreased operational speciation of P in contaminated ORR sediment may increase the dependence of the microbial community on other pools of P or select for microorganisms with increased P scavenging capabilities. Hence, the microbial community at the former S-3 Ponds contamination site may be constrained not only by increased toxic metal concentrations but also by the availability of essential elements, including P.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要