RL-based Stateful Neural Adaptive Sampling and Denoising for Real-Time Path Tracing

NeurIPS(2023)

引用 0|浏览17
暂无评分
摘要
Monte-Carlo path tracing is a powerful technique for realistic image synthesis but suffers from high levels of noise at low sample counts, limiting its use in real-time applications. To address this, we propose a framework with end-to-end training of a sampling importance network, a latent space encoder network, and a denoiser network. Our approach uses reinforcement learning to optimize the sampling importance network, thus avoiding explicit numerically approximated gradients. Our method does not aggregate the sampled values per pixel by averaging but keeps all sampled values which are then fed into the latent space encoder. The encoder replaces handcrafted spatiotemporal heuristics by learned representations in a latent space. Finally, a neural denoiser is trained to refine the output image. Our approach increases visual quality on several challenging datasets and reduces rendering times for equal quality by a factor of 1.6x compared to the previous state-of-the-art, making it a promising solution for real-time applications.
更多
查看译文
关键词
stateful neural adaptive sampling,denoising,path,rl-based,real-time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要