Improved Hardness of Approximation for Geometric Bin Packing

arXiv (Cornell University)(2023)

引用 0|浏览2
暂无评分
摘要
The Geometric Bin Packing (GBP) problem is a generalization of Bin Packing where the input is a set of $d$-dimensional rectangles, and the goal is to pack them into unit $d$-dimensional cubes efficiently. It is NP-Hard to obtain a PTAS for the problem, even when $d=2$. For general $d$, the best-known approximation algorithm has an approximation guarantee exponential in $d$, while the best hardness of approximation is still a small constant inapproximability from the case when $d=2$. In this paper, we show that the problem cannot be approximated within $d^{1-\epsilon}$ factor unless NP=ZPP. Recently, $d$-dimensional Vector Bin Packing, a closely related problem to the GBP, was shown to be hard to approximate within $\Omega(\log d)$ when $d$ is a fixed constant, using a notion of Packing Dimension of set families. In this paper, we introduce a geometric analog of it, the Geometric Packing Dimension of set families. While we fall short of obtaining similar inapproximability results for the Geometric Bin Packing problem when $d$ is fixed, we prove a couple of key properties of the Geometric Packing Dimension which highlight fundamental differences between Geometric Bin Packing and Vector Bin Packing.
更多
查看译文
关键词
improved hardness,approximation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要