Tumour Growth Mechanisms Determine Effectiveness of Adaptive Therapy in Glandular Tumours

Interdisciplinary Sciences: Computational Life Sciences(2024)

引用 0|浏览1
暂无评分
摘要
In cancer treatment, adaptive therapy holds promise for delaying the onset of recurrence through regulating the competition between drug-sensitive and drug-resistant cells. Adaptive therapy has been studied in well-mixed models assuming free mixing of all cells and spatial models considering the interactions of single cells with their immediate adjacent cells. Both models do not reflect the spatial structure in glandular tumours where intra-gland cellular interaction is high, while inter-gland interaction is limited. Here, we use mathematical modelling to study the effects of adaptive therapy on glandular tumours that expand using either glandular fission or invasive growth. A two-dimensional, lattice-based model of sites containing sensitive and resistant cells within individual glands is developed to study the evolution of glandular tumour cells under continuous and adaptive therapies. We found that although both growth models benefit from adaptive therapy’s ability to prevent recurrence, invasive growth benefits more from it than fission growth. This difference is due to the migration of daughter cells into neighboring glands that is absent in fission but present in invasive growth. The migration resulted in greater mixing of cells, enhancing competition induced by adaptive therapy. By varying the initial spatial spread and location of the resistant cells within the tumour, we found that modifying the conditions within the resistant cells containing glands affect both fission and invasive growth. However, modifying the conditions surrounding these glands affect invasive growth only. Our work reveals the interplay between growth mechanism and tumour topology in modulating the effectiveness of cancer therapy. Graphical Abstract
更多
查看译文
关键词
Mathematical modelling,Cancer growth,Ecology competition,Computational simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要