Tandem catalysts of different crystalline In2O3/sheet HZSM-5 zeolite for CO2 hydrogenation to aromatics

Journal of Colloid and Interface Science(2024)

引用 0|浏览6
暂无评分
摘要
In tandem catalysts, not only good synergy between the two active components is required, but also the precise control of the spatial distribution between the two active components of metal oxides and zeolite is crucial for the migration and conversion of reaction intermediates in the direct conversion of CO2 to hydrocarbons. The correlation between the metal and the acidic site of zeolite has traditionally been simplified as "the closer, the better". However, it should be noted that this principle only holds true for a portion of tandem catalysts. Therefore, this paper studied the effect of different crystalline In2O3 (cubic phase, hexagonal phase, and mixed cubic/hexagonal phase) and sheet HZSM-5 zeolite tandem catalysts on the activity of CO2 hydrogenation reaction under different spatial distribution. The generalized gradient approximation (GGA) of density functional theory (DFT) were used to simulate the adsorption energy of CO2 by oxygen vacancy on c-In2O3(1 1 1) and hIn2O3(1 0 4) planes, it was found that Ov1 on c-In2O3(1 1 1) and Ov4 on h-In2O3(1 0 4) had the strongest adsorption energy for CO2. In addition, it has been observed that the proximity of the two active components (e.g., during mortar mixing) results in decreased catalytic performance. This is due to the migration of metal In, which neutralizes the acid sites of zeolites and leads to inefficient conversion of methanol reaction intermediates to aromatics. As a result, CO2 conversion and aromatic selectivity are decreased.
更多
查看译文
关键词
Different crystalline In 2 O 3,Sheet HZSM-5 zeolite,Spatial distribution,CO 2 hydrogenation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要