EEG Emotion Recognition by Fusion of Multi-Scale Features.

Brain sciences(2023)

引用 0|浏览3
暂无评分
摘要
Electroencephalogram (EEG) signals exhibit low amplitude, complex background noise, randomness, and significant inter-individual differences, which pose challenges in extracting sufficient features and can lead to information loss during the mapping process from low-dimensional feature matrices to high-dimensional ones in emotion recognition algorithms. In this paper, we propose a Multi-scale Deformable Convolutional Interacting Attention Network based on Residual Network (MDCNAResnet) for EEG-based emotion recognition. Firstly, we extract differential entropy features from different channels of EEG signals and construct a three-dimensional feature matrix based on the relative positions of electrode channels. Secondly, we utilize deformable convolution (DCN) to extract high-level abstract features by replacing standard convolution with deformable convolution, enhancing the modeling capability of the convolutional neural network for irregular targets. Then, we develop the Bottom-Up Feature Pyramid Network (BU-FPN) to extract multi-scale data features, enabling complementary information from different levels in the neural network, while optimizing the feature extraction process using Efficient Channel Attention (ECANet). Finally, we combine the MDCNAResnet with a Bidirectional Gated Recurrent Unit (BiGRU) to further capture the contextual semantic information of EEG signals. Experimental results on the DEAP dataset demonstrate the effectiveness of our approach, achieving accuracies of 98.63% and 98.89% for Valence and Arousal dimensions, respectively.
更多
查看译文
关键词
EEG, emotion recognition, multi-scale convolution, ECANet, deformable convolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要