Coexistence and Succession of Spontaneous and Planted Vegetation on Extensive Mediterranean Green Roofs: Impacts on Soil, Seed Banks, and Mesofauna

Land(2023)

引用 0|浏览3
暂无评分
摘要
Extensive green roofs are well known to improve the urban environment, but in the Mediterranean regions, dry climatic conditions pose the problem of their sustainability when no irrigation is applied. After planting or sowing in 2012, 18 local Mediterranean plant species on different types of exposure and substrate in a non-irrigated extensive green roof in Avignon (South-Eastern France), the physico-chemical characteristics of the soil, winter and spring soil seed banks, soil mesofauna and initially sown, planted, or spontaneous vegetation expressed on the surface were studied from 2013 to 2020. In 2020, significant differences related to the exposure conditions (shade/sun) and, to a lesser extent, to the depth of substrate used (5 cm/5 cm or 10 cm with a water retention layer) were found. The deeper plots in the shade have significantly higher soil fertility, cover, and vegetation height. However, the plots in the sun have higher moss cover, planted or sowed vegetation abundance, and springtail abundance. By 2020, more than half of the initially sown species had disappeared, except for several planted perennials and short-cycle annual species. On the other hand, a significant increase in the species richness of spontaneously established species was measured over time. In the absence of a permanent and transient seed bank for the sowed and spontaneous species, the plant community is then mostly dependent on species flows via the local surrounding seed rain. Planting perennial species (Sedum spp., Iris lutescens), followed by spontaneous colonization of species present in the vicinity of the roof would then represent a more efficient strategy for the persistence of extensive non-irrigated green roofs in Mediterranean environments than sowing a species-rich local Mediterranean seed mixture dominated by annual species.
更多
查看译文
关键词
geophytes, grassland species, insolation, local species, plant cover, plant diversity, seed rain, substrate depth, survival
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要