From Transparent to Opaque: A Route towards Multifunctional Parts Injected with a Single Material

Luis D. Pedroso,Antonio J. Pontes, Antonio Alves,Fernando M. Duarte,Olga S. Carneiro

Materials(2023)

引用 1|浏览1
暂无评分
摘要
The technological, social and economic development observed in recent decades brought an exponential increase in consumption and inherent new challenges. Recycling is one of the best solutions to minimize the environmental impact of raw materials. However, multi-material components are difficult or even impossible to recycle. The present work focuses on the reduction in the number of different materials used in multifunctional components. In particular, it intends to assess the potential of injecting molding grades of polypropylene (PP) to produce parts with transparency (haze) gradients. Firstly, several polypropylene grades of different types were identified and injected under various thermal processing conditions, i.e., injection temperature and mold temperature, in order to vary the cooling rate, influencing the growth rate of the spherulites and eventually the presence/absence of alpha and beta crystalline zones. The injected parts' optical properties were then characterized, and the most promising PP grades were identified and selected for subsequent work, namely grade DR 7037.01, showing the widest range of haze (from 29.2 to 68.7%). and PP070G2M, presenting the highest haze value (75.3%). Finally, in an attempt to understand the origin of the haze variations observed, the parts injected with the selected PP grades were further characterized through differential scanning calorimetry (DSC) and polarized light microscopy. It was concluded that the main factor causing the observed haze difference was, apart from the size of the spherulites, the presence of internal layers with different birefringence and, therefore, different refractive indices.
更多
查看译文
关键词
graded property,transparency,haze,injection molding,polypropylene,circular economy,sustainability,recycling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要