The Effect of Hybrid B4C and Si3N4 Nanoparticles on the Mechanical and Physical Properties of Copper Nanocomposites

Metals(2023)

引用 0|浏览2
暂无评分
摘要
This study investigated the effects of reinforcing pure copper with hybrid B4C and Si3N4 nanoparticles on the mechanical and physical properties of the nanocomposite matrix. The composite matrix was prepared using the powder metallurgy (PM) method, allowing uniform nanoparticle dispersion within the copper matrix. The PM method was a practical approach for achieving a homogeneous and good dispersion of the reinforcing particles in the matrix while controlling the porosity and improving the microstructure of the fabricated composite matrix. The addition of B4C and Si3N4 are both very hard and dense materials. When added to a material, they can fill voids and reduce porosity. This can lead to significant improvements in the material’s mechanical properties. The study found that adding hybrid B4C and Si3N4 nanoparticles enhanced the microhardness and mechanical properties of the nanocomposites. The improvements in the mechanical and physical properties of such composites containing 5% B4C were 21.6% and 18.4% higher than the copper base alloy. The findings suggest that including ceramic particles is a viable strategy for enhancing the mechanical characteristics of copper in its pure form. For example, adding 5% B4C particles to copper resulted in a 23% increase in Young’s modulus of the material while reducing electrical conductivity by 4.6%. On the other hand, the hybrid composite Cu/5%B4C + 2.5%Si3N4 showed a 32% improvement in Young’s modulus and 71% in the microhardness value compared to the base metal. This makes it a promising option for various engineering applications, such as high-performance electrical contacts and bearings.
更多
查看译文
关键词
hybrid composite, copper alloy, B4C, Si3N4, powder metallurgy, mechanical properties, physical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要