Exosomes: Potential Next-Generation Nanocarriers for the Therapy of Inflammatory Diseases

PHARMACEUTICS(2023)

引用 1|浏览6
暂无评分
摘要
Inflammatory diseases are common pathological processes caused by various acute and chronic factors, and some of them are autoimmune diseases. Exosomes are fundamental extracellular vesicles secreted by almost all cells, which contain a series of constituents, i.e., cytoskeletal and cytosolic proteins (actin, tubulin, and histones), nucleic acids (mRNA, miRNA, and DNA), lipids (diacylglycerophosphates, cholesterol, sphingomyelin, and ceramide), and other bioactive components (cytokines, signal transduction proteins, enzymes, antigen presentation and membrane transport/fusion molecules, and adhesion molecules). This review will be a synopsis of the knowledge on the contribution of exosomes from different cell sources as possible therapeutic agents against inflammation, focusing on several inflammatory diseases, neurological diseases, rheumatoid arthritis and osteoarthritis, intestinal bowel disease, asthma, and liver and kidney injuries. Current knowledge indicates that the role of exosomes in the therapy of inflammation and in inflammatory diseases could be distinctive. The main limitations to their clinical translation are still production, isolation, and storage. Additionally, there is an urgent need to personalize the treatments in terms of the selection of exosomes; their dosages and routes of administration; and a deeper knowledge about their biodistribution, type and incidence of adverse events, and long-term effects of exosomes. In conclusion, exosomes can be a very promising next-generation therapeutic option, superior to synthetic nanocarriers and cell therapy, and can represent a new strategy of effective, safe, versatile, and selective delivery systems in the future.
更多
查看译文
关键词
extracellular vesicles,exosomes,chemical composition,miRNA,nanocarriers,inflammation,neurological diseases,liver,kidney and lung injuries,rheumatoid arthritis and osteoarthritis,intestinal bowel diseases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要