Temporal dynamics of short-term neural adaptation across human visual cortex.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览12
暂无评分
摘要
Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli. To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the input strength as a function of stimulus category, enabling the model to accurately predict neural responses across multiple image categories. The model fits suggest that differences in adaptation patterns arise from slower normalization dynamics in higher visual areas interacting with differences in input strength resulting from category selectivity. Our results reveal systematic differences in temporal adaptation of neural population responses across the human visual hierarchy and show that a single computational model of history-dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.
更多
查看译文
关键词
neural adaptation,temporal dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要