Adaptive control-based synchronization of discrete-time fractional-order fuzzy neural networks with time-varying delays.

Neural networks : the official journal of the International Neural Network Society(2023)

引用 1|浏览4
暂无评分
摘要
This paper is concerned with complete synchronization for discrete-time fractional-order fuzzy neural networks (DFFNNs) with time-varying delays. First, three original equalities and two Caputo σ-difference inequalities are established based on theory of discrete-time fractional Calculus. Next, a novel discrete-time adaptive controller with time-varying delay is designed, by virtue of 1-norm Lyapunov function and newly established lemmas herein as well as inequality techniques and contradiction method, some judgement conditions are derived to guarantee complete synchronization for the explored DFFNNs. Benefitting from discrete-time adaptive control strategy and our analysis method, the conservatism of the derived synchronization criteria is reduced. Ultimately, the effectiveness of our theoretical results and secure communication scheme are demonstrated through two numerical examples.
更多
查看译文
关键词
Complete synchronization,Discrete-time fractional-order,Fuzzy neural networks,Time-varying delays,Adaptive control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要