Urban lake water quality responses to elevated road salt concentrations.

Ellen Foley,Alan D Steinman

The Science of the total environment(2023)

引用 0|浏览3
暂无评分
摘要
Road salt runoff from de-icing applications is increasingly impacting water quality around the globe. Excess salt (especially chloride) concentrations can negatively impact the biological, chemical, and physical properties of freshwater ecosystems. Though road salt pollution is a prevalent issue affecting many northern temperate lakes, there are few studies on how freshwater salinization interacts with other ecological stressors such as eutrophication. We investigated how chloride from road deicers influences water quality in an urban lake. We sampled a tributary and lake receiving large amounts of road salt runoff from a nearby highway in Grand Rapids, Michigan over a 20-month period. Chloride concentrations in the deepest part of the lake consistently exceeded the US EPA chloride chronic toxicity threshold of 230 mg/L, at times reaching up to 331 mg/L. These high chloride concentrations appear to be responsible for preventing part of the lake from complete mixing, and causing hypoxia in the deepest regions of the lake. Total phosphorus concentrations near the surface averaged 35 μg/L but exceeded 7500 μg/L in the deepest part of the lake, which occupies 3-5 % of total lake volume. Phosphorus release rates from the sediments were low and unlikely to be a current source of the high phosphorus concentrations. Rather, both phosphorus and chloride likely have been accumulating in the hypolimnion over a relatively long period of time. Lake management actions will require control of both internal and external phosphorus and chloride sources in the future. We recommend that phosphorus be addressed first to avoid the extremely high phosphorus concentrations from reaching the photic zone and stimulating algal blooms, which would occur if salt was removed first and the halocline broke down. Our findings and recommendations are applicable to other lakes facing similar issues.
更多
查看译文
关键词
water quality,lake,salt
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要