Interaction between long noncoding RNA (lnc663) and microRNA (miR1128) regulates PDAT-like gene activity in bread wheat (Triticum aestivum L.).

Plant physiology and biochemistry : PPB(2023)

引用 0|浏览2
暂无评分
摘要
Amylose, a starch subcomponent, can bind lipids within its helical groove and form an amylose-lipid complex, known as resistant starch type 5 (RS-5). RS contributes to lower glycaemic index of grain with health benefits. Unfortunately, genes involved in lipid biosynthesis in wheat grain remain elusive. Our study aims to characterize the lipid biosynthesis gene and its post-transcriptional regulation using the parent bread wheat variety 'C 306' and its EMS-induced mutant line 'TAC 75' varying in amylose content. Quantitative analyses of starch-bound lipids showed that 'TAC 75' has significantly higher lipid content in grains than 'C 306' variety. Furthermore, expression analyses revealed the higher expression of wheat phospholipid: diacylglycerol acyltransferase-like (PDAT-like) in the 'TAC 75' compared to the 'C 306'. Overexpression and ectopic expression of TaPDAT in yeast and tobacco leaf confirmed its ability to accumulate lipids in vivo. Enzyme activity assay showed that TaPDAT catalyzes the triacylglycerol synthesis by acylating 1,2-diacylglycerol. Interestingly, the long non-coding RNA, lnc663, was upregulated with the TaPDAT gene, while the miRNA, miR1128, downregulated in the 'TAC 75', indicating a regulatory relationship. The GFP reporter assay confirmed that the lnc663 acts as a positive regulator, and the miR1128 as a negative regulator of the TaPDAT gene, which controls lipid accumulation in wheat grain. Our findings outline TaPDAT-mediated biosynthesis of lipid accumulation and reveal the molecular mechanism of the lnc663 and miR1128 mediated regulation of the TaPDAT gene in wheat grain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要