The effects of different biochars on Caenorhabditis elegans and the underlying transcriptomic mechanisms

PLOS ONE(2023)

引用 0|浏览7
暂无评分
摘要
Different biochars have diverse properties, with ambiguous effects on soil nematodes. This study investigated how aspen sawdust (ABC), bamboo powder (BBC), maize straw (MBC) and peanut-shell biochars (PBC) affected Caenorhabditis elegans via culture assays and RNA-seq analysis. The results showed that biochars derived from different agricultural materials varied significantly in physicochemical properties, and PBC produced more volatile organic compounds (VOCs) to attract C. elegans than ABC, BBC and MBC. Moreover, worms in ABC experienced the worst outcomes, while worms in PBC experienced milder impacts. Nematode body length decreased to 724.6 mu m, 784.0 mu m and 799.7 mu m on average in ABC, BBC and MBC, respectively, compared to the control (1052 mu m) and PBC treatments (960 mu m). The brood size in ABC, MBC, BBC and PBC decreased 41.1%, 39.4%, 39.2% and 19.1% compared to the control, respectively. Furthermore, the molecular mechanisms of biochar-induced developmental effects on C. elegans were explored. Although several differentially expressed genes (DEGs) were different among the four biochars, worm phenotypic changes were mainly related to col genes (col-129; col-140; col-40; col-184), bli-6, sqt-3, perm-2/4, cdk-8, daf-16 and sod-1/2/5, which are associated with cuticle collagen synthesis, eggshell formation in postembryonic growth and rhythmic processes. Our study suggests that different properties of biochars could be crucial to soil nematodes, as well as the worms' biochemical changes are important for the health in agriculture soil.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要