VOCs hyperspectral imaging: A new insight into evaluate emissions and the corresponding health risk from industries.

Journal of hazardous materials(2023)

引用 0|浏览21
暂无评分
摘要
The harm of VOCs emitted from industries to surrounding atmospheric environment and human health was well known and had received continuous attention. In order to improve the quality of urban atmospheric environment and the living environment of urban residents, a large number of original urban industries had been relocated to economically underdeveloped suburbs, which has significantly deteriorated the atmospheric environment in these areas and brought potential health risks to local vulnerable residents, which is actually an unfair manifestation under the background of economic development and ecological civilization construction. There were many residents near industrial parks, but there was a significant lack of VOCs monitoring equipment and data. At present, the time resolution of the most commonly used in situ method was seriously insufficient, and it was unable to quantify the diffusion/transport process of VOCs. It was urgent to have effective detection methods for industrial VOCs plume concentration and diffusion/transport process. In this study, we proposed a hyperspectral imaging technology, which can realize long-term continuous imaging monitoring on plume concentrations of formaldehyde (HCHO), glyoxal (CHOCHO) and benzaldehyde (C6H5CHO) and their corresponding diffusion processes. The deviation between the imaging and in situ sampling concentrations in the outlet was 4-19 %. The spatial resolution of this technique reached meter level, and the temporal resolution of one pixel was better than 20 s. In this study, we carried out hyperspectral imaging of aldehyde VOCs for a chemical facility, a petrochemical facility and an industrial park containing various types of enterprises in the Yangtze River Delta. The maximum observed concentration of HCHO was 120.44 ± 12.14 ug/m3 with the emission flux of 39.27 ± 3.97 g/h, which was emitted from a petrochemical facility in Shanghai. A diffusion/transport model was established, and we found that the spatial distribution of HCHO, CHOCHO and C6H5CHO for the chemical facility case in Shanghai were all mainly along the southeast-northwest direction during one year. The health risk assessment emphasized that residents within 10 km north of the outlet of the chemical facility in Shanghai should pay more attention to the health risks caused by industrial HCHO emissions. More systematically and comprehensively hyperspectral imaging of VOCs emissions for different types of enterprises and different processes were expected to performed to greatly promote the establishment of a dynamic emission inventory and an effective health risk evaluation system in the future.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要