High CO and sulfur tolerant proton exchange membrane fuel cell anodes enabled by "work along both lines" mechanism of 2,6-dihydroxymethyl pyridine molecule blocking layer

Journal of colloid and interface science(2024)

引用 0|浏览0
暂无评分
摘要
Proton exchange membrane fuel cells (PEMFCs) are hindered by their poor tolerance to CO and H2S poisoning. Herein, we report an effective method, via engineering 2,6-dihydroxymethyl pyridine (DhmPy) molecule blocking layers on Pt surface, aiming to save the poisoning issue for PEMFC anode reaction. The PEMFCs assembled by this catalyst produce a power density of 1.18 W cm-2 @ 2.0 A cm-2 and 1.32 W cm-2 @ 2.0 A cm-2, far exceeding commercial Pt/C after H2/10 ppm CO poisoning and H2/5 ppm H2S poisoning tests, respectively. Density functional theory (DFT) indicates that a coronal molecule layer with a steric confinement height (1.82 angstrom), constructed by DhmPy, emerges more intensive adsorption energy compared to 2,6-pyridinedicarboxamide (DcaPy) and 2,6-diacetylpyridine (DAcPy), thereby more effectively inhibits the adsorption of large-sized CO and H2S on Pt surface without affecting H2 traverse. This "work along both lines" mechanism with the resistance of both CO and H2S provides a new and promising design thought for high CO and sulfur tolerant PEMFC anodes.
更多
查看译文
关键词
Proton exchange membrane fuel cell anode,Molecule blocking layer,CO tolerance,Sulfur tolerance,Density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要