Typhoon vs. cold wave: a comparative assessment of geomorphic response and boulder displacement using RFID technology

Acta Oceanologica Sinica(2023)

引用 0|浏览2
暂无评分
摘要
Extreme storm events in coastal zones play significant roles in shaping the morphology of boulder beaches. However, boulder displacement and the geomorphological evolution of boulder beaches driven by different extreme storm events, especially typhoon events, remain poorly understood. Thus, boulder displacement and the geomorphic response on a boulder beach in Fujian, southeastern China, were explored before, during and after a cold wave event (Dec. 1–7, 2020) and before and after Typhoon In-Fa (Jul. 19–27, 2021), a large tropical storm. This was achieved by tracking 42 tagged boulders distributed in the intertidal and supratidal zones using Radio Frequency Identification (RFID) and topographic surveys using real-time kinematic techniques, respectively. The results showed obvious disparities in boulder displacement in different geomorphic zones due to cold wave and typhoon events that were mainly characterized by migration magnitude, range, direction, and mode of transport. The typhoon event led to rapid and substantial changes in the overall morphology of the boulder beach, while the cold wave event impacted the intertidal morphology of the boulder beach to only a small extent. The surrounding structure of boulders, beach slope and beach elevation had a combined dominant effect on boulder displacement under the same extreme event. Hydrodynamic factors (effective wave energy fluxes, incident wave direction, storm surge and water level) had dominant effects on boulder displacement during different extreme events. In terms of a single event, the magnitude of the boulder displacement driven by the typhoon was much greater than that driven by the cold wave. However, considering the frequency and duration of cold waves in winter, the impact of multiple consecutive cold waves on the geomorphology of the boulder beach cannot be ignored in this study area. Alternating and repeated interactions between these two processes constitute the complete geomorphic evolution of the boulder beach. This study contributes to improved predictions of the morphodynamic response of boulder beaches to future storms, especially large tropical storms, and facilitates better coastal management.
更多
查看译文
关键词
boulder displacement,RFID tracing technology,extreme events,boulder beach morphology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要