MonoForce: Self-supervised Learning of Physics-aware Model for Predicting Robot-terrain Interaction

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
While autonomous navigation of mobile robots on rigid terrain is a well-explored problem, navigating on deformable terrain such as tall grass or bushes remains a challenge. To address it, we introduce an explainable, physics-aware and end-to-end differentiable model which predicts the outcome of robot-terrain interaction from camera images, both on rigid and non-rigid terrain. The proposed MonoForce model consists of a black-box module which predicts robot-terrain interaction forces from onboard cameras, followed by a white-box module, which transforms these forces and a control signals into predicted trajectories, using only the laws of classical mechanics. The differentiable white-box module allows backpropagating the predicted trajectory errors into the black-box module, serving as a self-supervised loss that measures consistency between the predicted forces and ground-truth trajectories of the robot. Experimental evaluation on a public dataset and our data has shown that while the prediction capabilities are comparable to state-of-the-art algorithms on rigid terrain, MonoForce shows superior accuracy on non-rigid terrain such as tall grass or bushes. To facilitate the reproducibility of our results, we release both the code and datasets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要