Multi-omics profiling reveals cellular pathways and functions regulated by ALDH1B1 in colon cancer cells.

Chemico-biological interactions(2023)

引用 0|浏览6
暂无评分
摘要
Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要