Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach

arXiv (Cornell University)(2023)

引用 0|浏览17
暂无评分
摘要
Graph Neural Networks have achieved tremendous success in modeling complex graph data in a variety of applications. However, there are limited studies investigating privacy protection in GNNs. In this work, we propose a learning framework that can provide node privacy at the user level, while incurring low utility loss. We focus on a decentralized notion of Differential Privacy, namely Local Differential Privacy, and apply randomization mechanisms to perturb both feature and label data at the node level before the data is collected by a central server for model training. Specifically, we investigate the application of randomization mechanisms in high-dimensional feature settings and propose an LDP protocol with strict privacy guarantees. Based on frequency estimation in statistical analysis of randomized data, we develop reconstruction methods to approximate features and labels from perturbed data. We also formulate this learning framework to utilize frequency estimates of graph clusters to supervise the training procedure at a sub-graph level. Extensive experiments on real-world and semi-synthetic datasets demonstrate the validity of our proposed model.
更多
查看译文
关键词
local differential privacy,graph neural networks,neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要