Surveying the mugineic acid family: Ion mobility - quadrupole time-of-flight mass spectrometry (IM-QTOFMS) characterization and tandem mass spectrometry (LC-ESI-MS/MS) quantification of all eight naturally occurring phytosiderophores.

Analytica chimica acta(2023)

引用 1|浏览6
暂无评分
摘要
Phytosiderophores (PS) are root exudates released by grass species (Poaceae) that play a pivotal role in iron (Fe) plant nutrition. A direct determination of PS in biological samples is of paramount importance in understanding micronutrient acquisition mediated by PS. To date, eight plant-born PS have been identified; however, no analytical procedure is currently available to quantify all eight PS simultaneously with high analytical confidence. With access to the full set of PS standards for the first time, we report comprehensive methods to both fully characterize (IM-QTOFMS) and quantify (LC-ESI-MS/MS) all eight naturally occurring PS belonging to the mugineic acid family. The quantitative method was fully validated, yielding linear results for all eight analytes, and no unwanted interferences with soil and plant matrices were observed. LOD and LOQ values determined for each PS were below 11 and 35 nmol L, respectively. The method's precision under reproducibility conditions (intra- and inter-day) of measurement was less than 2.5% RSD for all analytes. Additionally, all PS were annotated with high-resolution mass spectrometric fragment spectra and further characterized via drift tube ion mobility-mass spectrometry. The collision cross-sections obtained for primary ion species yielded a valuable database for future research focused on in-depth PS studies. The new quantitative method was applied to analyse root exudates from Fe-controlled and deficient barley, oat, rye, and sorghum plants. All eight PS, including mugineic acid (MA), 3"-hydroxymugineic acid (HMA), 3"-epi-hydroxymugineic acid (epi-HMA), hydroxyavenic acid (HAVA), deoxymugineic acid (DMA), 3"-hydroxydeoxymugineic acid (HDMA), 3"-epi-hydroxydeoxymugineic acid (epi-HDMA) and avenic acid (AVA) were for the first time successfully identified and quantified in root exudates of various graminaceous plants using a single analytical procedure. These newly developed methods can be applied to studies aimed at improving crop yield and micronutrient grain content for food consumption via plant-based biofortification.
更多
查看译文
关键词
Phytosiderophores, Ion mobility-mass spectrometry, Collision cross-section, LC-ESI-MS/MS, Graminaceous plants, Fe plant nutrition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要