Eutectic-Based Polymer Electrolyte with the Enhanced Lithium Salt Dissociation for High-Performance Lithium Metal Batteries

Angewandte Chemie (International ed. in English)(2023)

引用 1|浏览2
暂无评分
摘要
The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+. The well-designed eutectic-based PAN1.2-SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm-1 at 30 & DEG;C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2-SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm-2, and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6Co0.2Mn0.2O2 pouch cells employing PAN1.2-SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries. A new type of eutectic-based solid polymer electrolyte is elaborately designed and prepared. The experimental characterizations and theoretical simulations confirm that the electrophilic succinonitrile (SN) interacts with poly (ethylene glycol) methyl ether acrylate (PEGMEA), effectively promotes the dissociation of lithium difluoro(oxalato) borate (LiDFOB), thus resulting the excellent comprehensive electrochemical performances.+image
更多
查看译文
关键词
Dendrite-Free,Eutectic Based Polymer Electrolyte,Interface Stability,Solid-State Lithium Metal Batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要