Computational screening of metalloporphyrin-based drug carriers for antitumor drug 5-fluorouracil.

Ya-Xing Guo, Bin Liu,Wen-Lu Wang, Jie Kang,Jing-Hua Chen,Wei-Ming Sun

Journal of molecular graphics & modelling(2023)

引用 0|浏览6
暂无评分
摘要
Developing novel nanoscale carriers for drug delivery is of great significance for improving treatment efficiency and reducing side effects of antitumor drugs. In view of the good biocompatibility and special affinity of porphyrin (PP) molecule to cancer cells, it was used to construct a series of metal-doped M@PP (M = Ca ∼ Zn) materials for the delivery of anticancer drug 5-fluorouracil (5-Fu) in this work. Our results reveal that 5-Fu is tightly adsorbed on M@PP (M = Ca ∼ V, Mn ∼ Co, and Zn) by chemisorption, but is physically adsorbed by M@PP (M = Cr, Ni, and Cu). The calculated electronic properties show that all these 5-Fu@[M@PP] (M = Ca ∼ Zn) complexes have both high stability and solubility. Among these 5-Fu@[M@PP] complexes, the chemical bond formed between 5-Fu and Ti@PP has the strongest covalent characteristic, resulting in the largest adsorption energy of -19.93 kcal/mol for 5-Fu@[Ti@PP]. In particular, 5-Fu@[Ti@PP] has the proper recovery time under the near-infrared light at body temperature, which further suggests that Ti@PP is the best drug carrier for 5-Fu. This study not only reveals the interaction strength and nature between 5-Fu and M@PP, but also confirmed the intriguing potential of Ti@PP as nano-carrier for drug delivery. However, further experimental research should be conducted to verify the conclusion obtained in this work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要