Dual-Signal Integrated Aptasensor for Microcystin-LR Detection via In Situ Generation of Silver Nanoclusters Induced by Circular DNA Strand Displacement Reactions.

Analytical chemistry(2023)

引用 0|浏览13
暂无评分
摘要
Inspired by the signal accumulation of circular DNA strand displacement reactions (CD-SDRs) and the in situ generation of silver nanoclusters (AgNCs) from signature template sequences, a dual-signal integrated aptasensor was designed for microcystin-LR (MC-LR) detection. The aptamer was programmed to be included in an enzyme-free CD-SDR, which utilized MC-LR as the primer and outputted the H1/H2 dsDNA in a continuous manner according to the ideal state. Ingeniously, H1/H2 dsDNA was enriched with signature template sequences, allowing in situ generation of AgNCs signal probes. To enhance the signal amplification performance, co-reaction acceleration strategies and CRISPR-Cas12a nucleases were invoked. The H1/H2 dsDNA could trigger the incidental cleavage performance of CRISPR-Cas12a nucleases: cis-cleavage reduced signature template sequences for the synthetic AgNCs, while trans-cleavage enabled fluorescence (FL) analysis. Meanwhile, AuPtAg was selected as the substrate material to facilitate the SO reduction reaction for enhancing the electrochemiluminescence (ECL) basal signals. ECL and FL detection do not interfere with each other and have improved accuracy and sensitivity, with limits of detection of 0.011 and 0.023 pmol/L, respectively. This widens the path for designing dual-mode sensing strategies for signal amplification.
更多
查看译文
关键词
silver nanoclusters,dual-signal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要