Multi-Octave Frequency Comb from an Ultra-Low-Threshold Nanophotonic Parametric Oscillator

arXiv (Cornell University)(2023)

引用 0|浏览7
暂无评分
摘要
Ultrabroadband frequency combs coherently unite distant portions of the electromagnetic spectrum. They underpin discoveries in ultrafast science and serve as the building blocks of modern photonic technologies. Despite tremendous progress in integrated sources of frequency combs, achieving multi-octave operation on chip has remained elusive mainly because of the energy demand of typical spectral broadening processes. Here we break this barrier and demonstrate multi-octave frequency comb generation using an optical parametric oscillator (OPO) in nanophotonic lithium niobate with only femtojoules of pump energy. The energy-efficient and robust coherent spectral broadening occurs far above the oscillation threshold of the OPO and detuned from its linear synchrony with the pump. We show that the OPO can undergo a temporal self-cleaning mechanism by transitioning from an incoherent operation regime, which is typical for operation far above threshold, to an ultrabroad coherent regime, corresponding to the nonlinear phase compensating the OPO cavity detuning. Such a temporal self-cleaning mechanism and the subsequent multi-octave coherent spectrum has not been explored in previous OPO designs and features a relaxed requirement for the quality factor and relatively narrow spectral coverage of the cavity. We achieve orders of magnitude reduction in the energy requirement compared to the other techniques, confirm the coherence of the comb, and present a path towards more efficient and wider spectral broadening. Our results pave the way for ultrashort-pulse and ultrabroadband on-chip nonlinear photonic systems for numerous applications.
更多
查看译文
关键词
comb,frequency,multi-octave,ultra-low-threshold
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要