Sol-Gel-Processed Y2O3-Al2O3 Mixed Oxide-Based Resistive Random-Access-Memory Devices

Nanomaterials (Basel, Switzerland)(2023)

引用 0|浏览3
暂无评分
摘要
Herein, sol-gel-processed Y2O3-Al2O3 mixed oxide-based resistive random-access-memory (RRAM) devices with different proportions of the involved Y(2)O3 and Al2O3 precursors were fabricated on indium tin oxide/glass substrates. The corresponding structural, chemical, and electrical properties were investigated. The fabricated devices exhibited conventional bipolar RRAM characteristics without requiring a high-voltage forming process. With an increase in the percentage of Al2O3 precursor above 50 mol%, the crystallinity reduced, with the amorphous phase increasing owing to internal stress. Moreover, with increasing Al2O3 percentage, the lattice oxygen percentage increased and the oxygen vacancy percentage decreased. A 50% Y2O3-50% Al2O3 mixed oxide-based RRAM device exhibited the maximum high-resistance-state/low-resistance-state (HRS/LRS) ratio, as required for a large readout margin and array size. Additionally, this device demonstrated good endurance characteristics, maintaining stability for approximately 100 cycles with a high HRS/LRS ratio (>104). The HRS and LRS resistances were also retained up to 104 s without considerable degradation.
更多
查看译文
关键词
y2o3–al2o3,y2o3–al2o3,gel-processed,oxide-based,random-access-memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要