Genetically engineered deletion in the N-terminal region of nifA1 in R. capsulatus to enhance hydrogen production

International Journal of Hydrogen Energy(2023)

引用 0|浏览4
暂无评分
摘要
NifA is the primary activator of nitrogenase, and the N-terminal domain of nifA is sensitive to ammonium concentration. In this work, a mutant Rhodobacter capsulatus ZX01 with a genetically engineered deletion in the N-terminal region of nifA1 was constructed by employing overlap extension PCR to mitigate the inhibition of ammonium on nitrogenase expression in photosynthetic bacteria. The effects of different ammonium ion concentrations on the growth and photo-fermentative hydrogen production performance of wild-type strain R. capsulatus SB1003 and mutant ZX01 with glucose and volatile fatty acids as the carbon sources were studied, respectively. When the ratio of NH4+-N was 20% and 30%, the hydrogen yield of the mutant ZX01 was enhanced by 14.8% and 20.9% compared with that of R. capsulatus SB1003 using 25 mM acetic acid and 34 mM butyric acid as the carbon source, respectively. In comparison, using 30 mM glucose as the carbon source, the hydrogen yield of ZX01 was increased by 17.7% and 22.2% compared with that of R. capsulatus SB1003 when the ratio of NH4+-N was 20% and 30%, and the nitrogenase activity of ZX01 was also enhanced by 38.0% and 47.6%, respectively. When using 10 mM NH4+ as a single nitrogen source, ZX01 showed a 2.6-fold increase in H2 production. These results indicated that ZX01 demonstrated higher ammonium tolerance and better hydrogen production performance than the wild-type. The deletion in the N-terminal region of nifA1 could partially de-repress the nitrogenase activity inhibited by ammonium.
更多
查看译文
关键词
Rhodobacter capsulatus, Hydrogen production, Ammonium tolerance, N-terminal, Gene splicing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要