Persistent sepsis-induced transcriptomic signatures in signaling pathways of peripheral blood leukocytes: A pilot study.

Zsuzsanna Elek,Eszter Losoncz, Zoltán Fülep,Réka Kovács-Nagy,Zsófia Bánlaki, Gergely Szlobodnyik,Gergely Keszler,Zsolt Rónai

Human immunology(2023)

引用 0|浏览3
暂无评分
摘要
Sepsis is a dysregulated immune response to infections that frequently precipitates multiple organ dysfunction and death despite intensive supportive therapy. The aim of the present study was to identify sepsis-induced alterations in the signaling transcriptome of peripheral blood leukocytes that might shed light on the elusive transition from proinflammatory to anti-inflammatory responses and underlie long-term post-sepsis immunosuppression. Peripheral blood leukocytes were collected from subjects (i) with systemic inflammation, (ii) with sepsis in the acute phase and (iii) 6 months after recovery from sepsis, corresponding to progressive stages of the disease. Transcriptomic analysis was performed with the QuantStudio 12K Flex OpenArray Human Signal Transduction Panel analyzing transcripts of 573 genes playing a significant role in signaling. Of them, 145 genes exhibited differential expression in sepsis as compared to systemic inflammation. Pathway analysis revealed enhanced expression levels of genes involved in primary immune responses (proinflammatory cytokines, neutrophil and macrophage activation markers) and signatures characteristic of immunosuppression (increased expression of anti-inflammatory cytokines and proapoptotic genes; diminished expression of T and B cell receptor dependent activating and survival pathways). Importantly, sepsis-induced expression patterns of 39 genes were not normalized by the end of the 6-month follow-up period, indicating expression aberrations persisting long after clinical recovery. Functional analysis of these transcripts revealed downregulation of the antiapoptotic Wnt and mTOR signaling pathways that might explain the post-sepsis immunosuppression commonly seen in sepsis survivors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要