Salicylic acid accelerates carbon starvation-induced leaf senescence in Arabidopsis thaliana by inhibiting autophagy through Nonexpressor of pathogenesis-related genes 1.

Baihong Zhang,Shuqin Huang, Zetian Guo,Yixuan Meng, Xue Li, Yuzhen Tian,Wenli Chen

Plant science : an international journal of experimental plant biology(2023)

引用 0|浏览2
暂无评分
摘要
In plants, leaf senescence is regulated by several factors, including age and carbon starvation. The molecular mechanism of age-regulated developmental leaf senescence differs from that of carbon starvation-induced senescence. Salicylic acid (SA) and Nonexpressor of pathogenesis-related genes 1 (NPR1) play important roles in promoting developmental leaf senescence. However, the relationship between SA signaling and carbon starvation-induced leaf senescence is not currently well understood. Here, we used Arabidopsis thaliana as material and found that carbon starvation-induced leaf senescence was accelerated in the SA dihydroxylase mutants s3hs5h compared to the Columbia ecotype (Col). Exogenous SA treatment significantly promoted carbon starvation-induced leaf senescence, especially in NPR1-GFP. Increasing the endogenous SA and overexpression of NPR1 inhibited carbon starvation-induced autophagy. However, mutation of NPR1 delayed carbon starvation-induced leaf senescence, increased autophagosome production and accelerated autophagic degradation of the Neighbor of BRCA1 gene 1 (NBR1). In conclusion, SA promotes carbon starvation-induced leaf senescence by inhibiting autophagy via NPR1.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要